Determination of the NMR structure of Gln25-ribonuclease T1.
Hatano, K., Kojima, M., Suzuki, E., Tanokura, M., Takahashi, K.(2003) Biol Chem 384: 1173-1183
- PubMed: 12974386
- DOI: https://doi.org/10.1515/BC.2003.130
- Primary Citation of Related Structures:
1IYY - PubMed Abstract:
Ribonuclease (RNase) T1 is a guanyloribonuclease, having two isozymes in nature, Gln25- and Lys25-RNase T1. Between these two isozymes, there is no difference in catalytic activity and three-dimensional structure; however, Lys25-RNase T1 is slightly more stable than Gln25-RNase T1. Recently, it has been suggested that the existence of a salt bridge between Lys25 and Asp29/Glu31 in Lys25-RNase T1 contributes to the stability. To elucidate the effects of the replacement of Lys25 with a Gln on the conformation and microenvironments of RNase T1 in detail, the three-dimensional solution structure of Gln25-RNase T1 was determined by simulated-annealing calculations. As a result, the topology of the overall folding was shown to be very similar to that of the Lys25-isozyme except for some differences. In particular, there were two differences in the property of torsion angles of the two disulfide bonds and the conformations of the residues 11-13, 63-66, and 92-93. With regard to the residues 11-13, the lack of the above-mentioned salt bridge in Gln25-RNase T1 was thought to induce the conformational difference of this segment as compared with the Lys25-isozyme. Furthermore, it was proposed that the perturbation of this segment might transfer to the residues 92-93 via the two disulfide bonds.
Organizational Affiliation:
Department of Biological Sciences, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan.