This extracellular domain is found repeated four times in grasshopper fasciclin I as well as in proteins from mammals, sea urchins, plants, yeast and bacteria [1].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associa ...
This entry includes membrane transporters and represents some 7 of potentially 14-16 TM regions. In many instances, its members forms part of complex I that catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane, and in this context is a combination predominantly of subunits 2, 4, 5, 14, L, M and N [1]. In many bacterial species these proteins are probable stand-alone transporters not coupled with oxidoreduction [2].
This entry represents an amino terminal extension of Pfam:PF00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in ...
This entry represents an amino terminal extension of Pfam:PF00361. Only NADH-Ubiquinone chain 5 and eubacterial chain L are in this family. This sub-family is part of complex I which catalyses the transfer of two electrons from NADH to ubiquinone in a reaction that is associated with proton translocation across the membrane.
Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. Domain contai ...
Superfamily includes proteins containing domains which bind to iron-sulfur clusters. Members include bacterial ferredoxins, various dehydrogenases, and various reductases. Structure of the domain is an alpha-antiparallel beta sandwich. Domain contains two 4Fe4S clusters.
For questions/corrections to specific PDB entries, including citation updates: email deposit-help@mail.wwpdb.org
Thank you for providing your feedback! Someone will be in touch with you shortly. This window will automatically close in 5 seconds.
Apologies, our feedback server is currently unavailable and we are troubleshooting the issue. In the meantime, please copy and paste the below information into an email addressed to info@rcsb.org