3RSB

Structure of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from Methanocaldococcus jannaschii


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.279 
  • R-Value Work: 0.256 
  • R-Value Observed: 0.257 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Structure and Mutational Analysis of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from Methanocaldococcus jannaschii: Insights into GTP Binding and Dimerization.

Newmister, S.A.Otte, M.M.Escalante-Semerena, J.C.Rayment, I.

(2011) Biochemistry 50: 5301-5313

  • DOI: https://doi.org/10.1021/bi200329t
  • Primary Citation of Related Structures:  
    3RSB

  • PubMed Abstract: 

    In archaea and bacteria, the late steps in adenosylcobalamin (AdoCbl) biosynthesis are collectively known as the nucleotide loop assembly (NLA) pathway. In the archaeal and bacterial NLA pathways, two different guanylyltransferases catalyze the activation of the corrinoid. Structural and functional studies of the bifunctional bacterial guanylyltransferase that catalyze both ATP-dependent corrinoid phosphorylation and GTP-dependent guanylylation are available, but similar studies of the monofunctional archaeal enzyme that catalyzes only GTP-dependent guanylylation are not. Herein, the three-dimensional crystal structure of the guanylyltransferase (CobY) enzyme from the archaeon Methanocaldococcus jannaschii (MjCobY) in complex with GTP is reported. The model identifies the location of the active site. An extensive mutational analysis was performed, and the functionality of the variant proteins was assessed in vivo and in vitro. Substitutions of residues Gly8, Gly153, or Asn177 resulted in ≥94% loss of catalytic activity; thus, variant proteins failed to support AdoCbl synthesis in vivo. Results from isothermal titration calorimetry experiments showed that MjCobY(G153D) had 10-fold higher affinity for GTP than MjCobY(WT) but failed to bind the corrinoid substrate. Results from Western blot analyses suggested that the above-mentioned substitutions render the protein unstable and prone to degradation; possible explanations for the observed instability of the variants are discussed within the framework of the three-dimensional crystal structure of MjCobY(G153D) in complex with GTP. The fold of MjCobY is strikingly similar to that of the N-terminal domain of Mycobacterium tuberculosis GlmU (MtbGlmU), a bifunctional acetyltransferase/uridyltransferase that catalyzes the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).


  • Organizational Affiliation

    Department of Biochemistry, University of Wisconsin , Madison, WI 53706, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Adenosylcobinamide-phosphate guanylyltransferase
A, B, C, D
196Methanocaldococcus jannaschiiMutation(s): 1 
Gene Names: cobYMJ1117
EC: 2.7.7.62
UniProt
Find proteins for Q58517 (Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440))
Explore Q58517 
Go to UniProtKB:  Q58517
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ58517
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.80 Å
  • R-Value Free: 0.279 
  • R-Value Work: 0.256 
  • R-Value Observed: 0.257 
  • Space Group: P 31
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 63.6α = 90
b = 63.6β = 90
c = 222.5γ = 120
Software Package:
Software NamePurpose
HKL-3000data collection
SOLVEphasing
REFMACrefinement
HKL-3000data reduction
HKL-3000data scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-05-18
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2024-11-06
    Changes: Data collection, Database references, Derived calculations, Structure summary