3S7A

Human dihydrofolate reductase binary complex with PT684


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.283 
  • R-Value Work: 0.237 
  • R-Value Observed: 0.239 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.1 of the entry. See complete history


Literature

Structural analysis of human dihydrofolate reductase as a binary complex with the potent and selective inhibitor 2,4-diamino-6-{2'-O-(3-carboxypropyl)oxydibenz[b,f]-azepin-5-yl}methylpteridine reveals an unusual binding mode.

Cody, V.Pace, J.Nowak, J.

(2011) Acta Crystallogr D Biol Crystallogr 67: 875-880

  • DOI: https://doi.org/10.1107/S0907444911030071
  • Primary Citation of Related Structures:  
    3S7A

  • PubMed Abstract: 

    In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structure of the binary complex of human dihydrofolate reductase (hDHFR) with the potent and selective inhibitor 2,4-diamino-6-{2'-O-(3-carboxypropyl)oxydibenz[b,f]-azepin-5-yl}methylpteridine (PT684) was determined to 1.8 Å resolution. These data revealed that the carboxylate side chain of PT684 occupies two alternate positions, neither of which interacts with the conserved Arg70 in the active-site pocket, which in turn hydrogen bonds to water. These observations are in contrast to those reported for the ternary complex of mouse DHFR (mDHFR) with NADPH [Cody et al. (2008), Acta Cryst. D64, 977-984], in which the 3-carboxypropyl side chain of PT684 was hydrolyzed to its hydroxyl derivative, PT684a. The crystallization conditions differed for the human and mouse DHFR crystals (100 mM K2HPO4 pH 6.9, 30% ammonium sulfate for hDHFR; 15 mM Tris pH 8.3, 75 mM sodium cacodylate, PEG 4K for mDHFR). Additionally, the side chains of Phe31 and Gln35 in the hDHFR complex have a single conformation, whereas in the mDHFR complex they occupied two alternative conformations. These data show that the hDHFR complex has a decreased active-site volume compared with the mDHFR complex, as reflected in a relative shift of helix C (residues 59-64) of 1.2 Å, and a shift of 1.5 Å compared with the ternary complex of Pneumocystis carinii DHFR (pcDHFR) with the parent dibenz[b,f]azepine PT653. These data suggest that the greater inhibitory potency of PT684 against pcDHFR is consistent with the larger active-site volume of pcDHFR and the predicted interactions of the carboxylate side chain with Arg75.


  • Organizational Affiliation

    Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA. cody@hwi.buffalo.edu


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Dihydrofolate reductase186Homo sapiensMutation(s): 0 
Gene Names: DHFR
EC: 1.5.1.3
UniProt & NIH Common Fund Data Resources
Find proteins for P00374 (Homo sapiens)
Explore P00374 
Go to UniProtKB:  P00374
PHAROS:  P00374
GTEx:  ENSG00000228716 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00374
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
684 PDBBind:  3S7A IC50: 1.1 (nM) from 1 assay(s)
BindingDB:  3S7A IC50: min: 1.1, max: 1500 (nM) from 4 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.283 
  • R-Value Work: 0.237 
  • R-Value Observed: 0.239 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 54.588α = 90
b = 55.106β = 90
c = 64.827γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
MOLREPphasing
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2011-10-05
    Type: Initial release
  • Version 1.1: 2023-09-13
    Changes: Data collection, Database references, Derived calculations, Refinement description