Discovery of cyclic sulfone hydroxyethylamines as potent and selective beta-site APP-cleaving enzyme 1 (BACE1) inhibitors: structure based design and in vivo reduction of amyloid beta-peptides
Rueeger, H., Lueoend, R., Rogel, O., Rondeau, J.M., Mobitz, H., Machauer, R., Jacobson, L., Staufenbiel, M., Desrayaud, S., Neumann, U.(2012) J Med Chem 55: 3364-3386
- PubMed: 22380629 
- DOI: https://doi.org/10.1021/jm300069y
- Primary Citation of Related Structures:  
3VEU, 3VF3, 3VG1, 4D83, 4D85, 4D88, 4D89, 4D8C - PubMed Abstract: 
Structure-based design of a series of cyclic hydroxyethylamine BACE1 inhibitors allowed the rational incorporation of prime- and nonprime-side fragments to a central core template without any amide functionality. The core scaffold selection and the structure-activity relationship development were supported by molecular modeling studies and by X-ray analysis of BACE1 complexes with various ligands to expedite the optimization of the series. The direct extension from P1-aryl- and heteroaryl moieties into the S3 binding pocket allowed the enhancement of potency and selectivity over cathepsin D. Restraining the design and synthesis of compounds to a physicochemical property space consistent with central nervous system drugs led to inhibitors with improved blood-brain barrier permeability. Guided by structure-based optimization, we were able to obtain highly potent compounds such as 60p with enzymatic and cellular IC(50) values of 2 and 50 nM, respectively, and with >200-fold selectivity over cathepsin D. Pharmacodynamic studies in APP51/16 transgenic mice at oral doses of 180 μmol/kg demonstrated significant reduction of brain Aβ levels.
Organizational Affiliation: 
Department of Global Discovery Chemistry, Institutes for BioMedical Research, Novartis Pharma AG, CH-4057 Basel, Switzerland. heinrich.rueeger@novartis.com