4MDO

Crystal structure of a GH1 beta-glucosidase from the fungus Humicola insolens


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.172 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural basis for glucose tolerance in GH1 beta-glucosidases.

Giuseppe, P.O.Souza, T.A.C.B.Souza, F.H.M.Zanphorlin, L.M.Machado, C.B.Ward, R.J.Jorge, J.A.Furriel, R.P.M.Murakami, M.T.

(2014) Acta Crystallogr D Biol Crystallogr 70: 1631-1639

  • DOI: https://doi.org/10.1107/S1399004714006920
  • Primary Citation of Related Structures:  
    4MDO, 4MDP

  • PubMed Abstract: 

    Product inhibition of β-glucosidases (BGs) by glucose is considered to be a limiting step in enzymatic technologies for plant-biomass saccharification. Remarkably, some β-glucosidases belonging to the GH1 family exhibit unusual properties, being tolerant to, or even stimulated by, high glucose concentrations. However, the structural basis for the glucose tolerance and stimulation of BGs is still elusive. To address this issue, the first crystal structure of a fungal β-glucosidase stimulated by glucose was solved in native and glucose-complexed forms, revealing that the shape and electrostatic properties of the entrance to the active site, including the +2 subsite, determine glucose tolerance. The aromatic Trp168 and the aliphatic Leu173 are conserved in glucose-tolerant GH1 enzymes and contribute to relieving enzyme inhibition by imposing constraints at the +2 subsite that limit the access of glucose to the -1 subsite. The GH1 family β-glucosidases are tenfold to 1000-fold more glucose tolerant than GH3 BGs, and comparative structural analysis shows a clear correlation between active-site accessibility and glucose tolerance. The active site of GH1 BGs is located in a deep and narrow cavity, which is in contrast to the shallow pocket in the GH3 family BGs. These findings shed light on the molecular basis for glucose tolerance and indicate that GH1 BGs are more suitable than GH3 BGs for biotechnological applications involving plant cell-wall saccharification.


  • Organizational Affiliation

    Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, CP 6192, 13083-970 Campinas-SP, Brazil.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Beta-glucosidase499Mycothermus thermophilusMutation(s): 0 
Gene Names: bgl4
UniProt
Find proteins for O93784 (Humicola grisea var. thermoidea)
Explore O93784 
Go to UniProtKB:  O93784
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO93784
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.172 
  • Space Group: P 65 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 113.543α = 90
b = 113.543β = 90
c = 179.058γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2014-06-25
    Type: Initial release
  • Version 1.1: 2015-07-29
    Changes: Database references
  • Version 1.2: 2024-02-28
    Changes: Data collection, Database references, Derived calculations