Protein synthesis is targeted by numerous, chemically distinct antibiotics that bind and inhibit key functional centers of the ribosome. Using single-molecule imaging and X-ray crystallography, we show that the aminoglycoside neomycin blocks aminoacyl-transfer RNA (aa-tRNA) selection and translocation as well as ribosome recycling by binding to helix 69 (H69) of 23S ribosomal RNA within the large subunit of the Escherichia coli ribosome. There, neomycin prevents the remodeling of intersubunit bridges that normally accompanies the process of subunit rotation to stabilize a partially rotated ribosome configuration in which peptidyl (P)-site tRNA is constrained in a previously unidentified hybrid position. Direct measurements show that this neomycin-stabilized intermediate is incompatible with the translation factor binding that is required for distinct protein synthesis reactions. These findings reveal the functional importance of reversible intersubunit rotation to the translation mechanism and shed new light on the allosteric control of ribosome functions by small-molecule antibiotics.
Organizational Affiliation:
Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA.
For questions/corrections to specific PDB entries, including citation updates: email deposit-help@mail.wwpdb.org
Thank you for providing your feedback! Someone will be in touch with you shortly. This window will automatically close in 5 seconds.
Apologies, our feedback server is currently unavailable and we are troubleshooting the issue. In the meantime, please copy and paste the below information into an email addressed to info@rcsb.org