Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket.
Sun, B., Bachhawat, P., Chu, M.L., Wood, M., Ceska, T., Sands, Z.A., Mercier, J., Lebon, F., Kobilka, T.S., Kobilka, B.K.(2017) Proc Natl Acad Sci U S A 114: 2066-2071
- PubMed: 28167788 
- DOI: https://doi.org/10.1073/pnas.1621423114
- Primary Citation of Related Structures:  
5UIG - PubMed Abstract: 
The adenosine A 2A receptor (A 2A R) has long been implicated in cardiovascular disorders. As more selective A 2A R ligands are being identified, its roles in other disorders, such as Parkinson's disease, are starting to emerge, and A 2A R antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A 2A receptor bound to compound 1 (Cmpd-1), a novel A 2A R/ N -methyl d-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A 2A receptor with a cytochrome b562-RIL (BRIL) fusion (A 2A R-BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A 2A R-BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1-bound A 2A R-BRIL prevented formation of the lattice observed with the ZM241385-bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A 2A R structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr9 1.35 and Tyr271 7.36 , which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A 2A R structures, highlighting flexibility in the binding pocket that may facilitate the development of A 2A R-selective compounds for the treatment of Parkinson's disease.
Organizational Affiliation: 
ConfometRx, Inc., Santa Clara, CA 95054.