6GAL

Structure of fully reduced Hydrogenase (Hyd-1) variant E28Q collected at pH 10


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.25 Å
  • R-Value Free: 
    0.147 (Depositor), 0.150 (DCC) 
  • R-Value Work: 
    0.120 (Depositor), 0.120 (DCC) 
  • R-Value Observed: 
    0.121 (Depositor) 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted CXSClick on this verticalbar to view details

This is version 1.3 of the entry. See complete history


Literature

Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O2-Tolerant [NiFe]-Hydrogenase.

Evans, R.M.Ash, P.A.Beaton, S.E.Brooke, E.J.Vincent, K.A.Carr, S.B.Armstrong, F.A.

(2018) J Am Chem Soc 140: 10208-10220

  • DOI: https://doi.org/10.1021/jacs.8b04798
  • Primary Citation of Related Structures:  
    5LRY, 6FPI, 6FPO, 6FPW, 6G7R, 6GAL, 6GAM, 6GAN

  • PubMed Abstract: 

    Catalytic long-range proton transfer in [NiFe]-hydrogenases has long been associated with a highly conserved glutamate (E) situated within 4 Å of the active site. Substituting for glutamine (Q) in the O 2 -tolerant [NiFe]-hydrogenase-1 from Escherichia coli produces a variant (E28Q) with unique properties that have been investigated using protein film electrochemistry, protein film infrared electrochemistry, and X-ray crystallography. At pH 7 and moderate potential, E28Q displays approximately 1% of the activity of the native enzyme, high enough to allow detailed infrared measurements under steady-state conditions. Atomic-level crystal structures reveal partial displacement of the amide side chain by a hydroxide ion, the occupancy of which increases with pH or under oxidizing conditions supporting formation of the superoxidized state of the unusual proximal [4Fe-3S] cluster located nearby. Under these special conditions, the essential exit pathway for at least one of the H + ions produced by H 2 oxidation, and assumed to be blocked in the E28Q variant, is partially repaired. During steady-state H 2 oxidation at neutral pH (i.e., when the barrier to H + exit via Q28 is almost totally closed), the catalytic cycle is dominated by the reduced states "Ni a -R" and "Ni a -C", even under highly oxidizing conditions. Hence, E28 is not involved in the initial activation/deprotonation of H 2 , but facilitates H + exit later in the catalytic cycle to regenerate the initial oxidized active state, assumed to be Ni a -SI. Accordingly, the oxidized inactive resting state, "Ni-B", is not produced by E28Q in the presence of H 2 at high potential because Ni a -SI (the precursor for Ni-B) cannot accumulate. The results have important implications for understanding the catalytic mechanism of [NiFe]-hydrogenases and the control of long-range proton-coupled electron transfer in hydrogenases and other enzymes.


  • Organizational Affiliation

    Department of Chemistry , University of Oxford , Oxford OX1 3QR , United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Hydrogenase-1 small chainA [auth S],
C [auth T]
335Escherichia coli K-12Mutation(s): 0 
Gene Names: hyaAb0972JW0954
EC: 1.12.99.6
UniProt
Find proteins for P69739 (Escherichia coli (strain K12))
Explore P69739 
Go to UniProtKB:  P69739
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP69739
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Hydrogenase-1 large chainB [auth L],
D [auth M]
582Escherichia coli K-12Mutation(s): 0 
EC: 1.12.99.6
UniProt
Find proteins for P0ACD8 (Escherichia coli (strain K12))
Explore P0ACD8 
Go to UniProtKB:  P0ACD8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0ACD8
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 9 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
SF4
Query on SF4

Download Ideal Coordinates CCD File 
E [auth S],
L [auth T]
IRON/SULFUR CLUSTER
Fe4 S4
LJBDFODJNLIPKO-UHFFFAOYSA-N
SF3
Query on SF3

Download Ideal Coordinates CCD File 
G [auth S],
N [auth T]
FE4-S3 CLUSTER
Fe4 S3
QQACTBFBZNWJMV-UHFFFAOYSA-N
F3S
Query on F3S

Download Ideal Coordinates CCD File 
F [auth S],
M [auth T]
FE3-S4 CLUSTER
Fe3 S4
FCXHZBQOKRZXKS-UHFFFAOYSA-N
CXS
Query on CXS

Download Ideal Coordinates CCD File 
S [auth M]3-CYCLOHEXYL-1-PROPYLSULFONIC ACID
C9 H19 N O3 S
PJWWRFATQTVXHA-UHFFFAOYSA-N
EJ2
Query on EJ2

Download Ideal Coordinates CCD File 
J [auth L],
Q [auth M]
NI-FE REDUCED ACTIVE CENTER
C3 H Fe N2 Ni O
JIXQCBCEPWXSQU-UHFFFAOYSA-O
SO4
Query on SO4

Download Ideal Coordinates CCD File 
I [auth S],
P [auth M]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
CL
Query on CL

Download Ideal Coordinates CCD File 
H [auth S],
O [auth T]
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
MG
Query on MG

Download Ideal Coordinates CCD File 
K [auth L],
R [auth M]
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
LI
Query on LI

Download Ideal Coordinates CCD File 
T [auth M],
U [auth M]
LITHIUM ION
Li
HBBGRARXTFLTSG-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.25 Å
  • R-Value Free:  0.147 (Depositor), 0.150 (DCC) 
  • R-Value Work:  0.120 (Depositor), 0.120 (DCC) 
  • R-Value Observed: 0.121 (Depositor) 
Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 94.906α = 90
b = 95.224β = 90
c = 183.91γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DIALSdata reduction
Aimlessdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted CXSClick on this verticalbar to view details

Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Biotechnology and Biological Sciences Research CouncilUnited KingdomBB/N006321/1

Revision History  (Full details and data files)

  • Version 1.0: 2019-02-27
    Type: Initial release
  • Version 1.1: 2019-07-10
    Changes: Data collection
  • Version 1.2: 2024-01-17
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.3: 2024-11-20
    Changes: Structure summary