6Q50

Structure of MPT-4, a mannose phosphorylase from Leishmania mexicana, in complex with phosphate ion


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.200 
  • R-Value Work: 0.160 
  • R-Value Observed: 0.162 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites.

Sernee, M.F.Ralton, J.E.Nero, T.L.Sobala, L.F.Kloehn, J.Vieira-Lara, M.A.Cobbold, S.A.Stanton, L.Pires, D.E.V.Hanssen, E.Males, A.Ward, T.Bastidas, L.M.van der Peet, P.L.Parker, M.W.Ascher, D.B.Williams, S.J.Davies, G.J.McConville, M.J.

(2019) Cell Host Microbe 26: 385-399.e9

  • DOI: https://doi.org/10.1016/j.chom.2019.08.009
  • Primary Citation of Related Structures:  
    6Q4W, 6Q4X, 6Q4Y, 6Q4Z, 6Q50

  • PubMed Abstract: 

    Parasitic protists belonging to the genus Leishmania synthesize the non-canonical carbohydrate reserve, mannogen, which is composed of β-1,2-mannan oligosaccharides. Here, we identify a class of dual-activity mannosyltransferase/phosphorylases (MTPs) that catalyze both the sugar nucleotide-dependent biosynthesis and phosphorolytic turnover of mannogen. Structural and phylogenic analysis shows that while the MTPs are structurally related to bacterial mannan phosphorylases, they constitute a distinct family of glycosyltransferases (GT108) that have likely been acquired by horizontal gene transfer from gram-positive bacteria. The seven MTPs catalyze the constitutive synthesis and turnover of mannogen. This metabolic rheostat protects obligate intracellular parasite stages from nutrient excess, and is essential for thermotolerance and parasite infectivity in the mammalian host. Our results suggest that the acquisition and expansion of the MTP family in Leishmania increased the metabolic flexibility of these protists and contributed to their capacity to colonize new host niches.


  • Organizational Affiliation

    Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
MPT-4335Leishmania mexicana MHOM/GT/2001/U1103Mutation(s): 0 
Gene Names: LMXM_10_1260
UniProt
Find proteins for E9ANE0 (Leishmania mexicana (strain MHOM/GT/2001/U1103))
Explore E9ANE0 
Go to UniProtKB:  E9ANE0
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupE9ANE0
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

Unit Cell:
Length ( Å )Angle ( ˚ )
a = 53.366α = 90
b = 67.194β = 90
c = 96.97γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DIALSdata reduction
Aimlessdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Australian Research CouncilAustraliaDP160100597
Australian Research CouncilAustraliaDP180101957
Biotechnology and Biological Sciences Research CouncilUnited KingdomBB/M011151
European Research CouncilUnited KingdomERC-2012-AdG-322942

Revision History  (Full details and data files)

  • Version 1.0: 2019-09-25
    Type: Initial release
  • Version 1.1: 2021-02-17
    Changes: Database references, Derived calculations
  • Version 1.2: 2024-01-24
    Changes: Data collection, Database references, Refinement description