Members of this family adopt a helical structure, consisting of a four-helix cluster core (alpha 1, alpha 8, alpha 9, alpha 10) and two successive beta-hairpins (beta 1 to beta 4). An approx. 50-amino acid segment that contains four short helices (al ...
Members of this family adopt a helical structure, consisting of a four-helix cluster core (alpha 1, alpha 8, alpha 9, alpha 10) and two successive beta-hairpins (beta 1 to beta 4). An approx. 50-amino acid segment that contains four short helices (alpha 2 to alpha 4), meanders around the surface of the core structure. In BRCA2, the alpha 9 and alpha 10 helices pack with BRCA-2_OB1 (Pfam:PF09103) through van der Waals contacts involving hydrophobic and aromatic residues, and also through side-chain and backbone hydrogen bonds. The domain binds the 70-amino acid DSS1 (deleted in split-hand/split foot syndrome) protein, which was originally identified as one of three genes that map to a 1.5-Mb locus deleted in an inherited developmental malformation syndrome [1].
Members of this family assume an OB fold, which consists of a highly curved five-stranded beta-sheet that closes on itself to form a beta-barrel. OB1 has a shallow groove formed by one face of the curved sheet and is demarcated by two loops, one betw ...
Members of this family assume an OB fold, which consists of a highly curved five-stranded beta-sheet that closes on itself to form a beta-barrel. OB1 has a shallow groove formed by one face of the curved sheet and is demarcated by two loops, one between beta 1 and beta 2 and another between beta 4 and beta 5, which allows for weak single strand DNA binding. The domain also binds the 70-amino acid DSS1 (deleted in split-hand/split foot syndrome) protein, which was originally identified as one of three genes that map to a 1.5-Mb locus deleted in an inherited developmental malformation syndrome [1].
Members of this family assume an OB fold, which consists of a highly curved five-stranded beta-sheet that closes on itself to form a beta-barrel. OB3 has a pronounced groove formed by one face of the curved sheet and is demarcated by two loops, one b ...
Members of this family assume an OB fold, which consists of a highly curved five-stranded beta-sheet that closes on itself to form a beta-barrel. OB3 has a pronounced groove formed by one face of the curved sheet and is demarcated by two loops, one between beta 1 and beta 2 and another between beta 4 and beta 5, which allows for strong ssDNA binding [1].
Members of this family adopt a secondary structure consisting of a pair of long, antiparallel alpha-helices (the stem) that support a three-helix bundle (3HB) at their end. The 3HB contains a helix-turn-helix motif and is similar to the DNA binding d ...
Members of this family adopt a secondary structure consisting of a pair of long, antiparallel alpha-helices (the stem) that support a three-helix bundle (3HB) at their end. The 3HB contains a helix-turn-helix motif and is similar to the DNA binding domains of the bacterial site-specific recombinases, and of eukaryotic Myb and homeodomain transcription factors. The Tower domain has an important role in the tumour suppressor function of BRCA2, and is essential for appropriate binding of BRCA2 to DNA [1].
BRCA2 participates in homologous recombination-mediated repair of double-strand DNA breaks. t stimulates the displacement of Replication protein A (RPA), and also facilitates filament formation. This entry represents the second OB fold (OB2) from the ...
BRCA2 participates in homologous recombination-mediated repair of double-strand DNA breaks. t stimulates the displacement of Replication protein A (RPA), and also facilitates filament formation. This entry represents the second OB fold (OB2) from the C-terminal ssDNA binding domain (DBD) which has three OB folds [1]. OB2 and OB3 are arranged in tandem and their mode of binding can be considered qualitatively similar to two OB folds of RPA1, DBD-A and DBD-B [1].
For questions/corrections to specific PDB entries, including citation updates: email deposit-help@mail.wwpdb.org
Thank you for providing your feedback! Someone will be in touch with you shortly. This window will automatically close in 5 seconds.
Apologies, our feedback server is currently unavailable and we are troubleshooting the issue. In the meantime, please copy and paste the below information into an email addressed to info@rcsb.org