Domain Annotation: SCOP/SCOPe Classification SCOP-e Database Homepage

ChainsDomain InfoClassFoldSuperfamilyFamilyDomainSpeciesProvenance Source (Version)
Ad5l5pa_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Od5l5po_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Bd5l5pb_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Pd5l5pp_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Cd5l5pc1 Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) automated matches automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Cd5l5pc2 Artifacts Tags Tags Tags C-terminal Tags (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Qd5l5pq1 Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) automated matches automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Qd5l5pq2 Artifacts Tags Tags Tags C-terminal Tags (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Dd5l5pd_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) automated matches automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Rd5l5pr_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) automated matches automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Ed5l5pe_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) automated matches automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Sd5l5ps_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) automated matches automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Fd5l5pf_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Td5l5pt_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Gd5l5pg_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Ud5l5pu_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Hd5l5ph_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Vd5l5pv_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Wd5l5pw_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Id5l5pi_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Xd5l5px_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Jd5l5pj_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Yd5l5py_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Human (Homo sapiens ) [TaxId: 9606 ], Baker's yeast (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Kd5l5pk_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Human (Homo sapiens ) [TaxId: 9606 ], Baker's yeast (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Ld5l5pl_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], Human (Homo sapiens ) [TaxId: 9606 ], Baker's yeast (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], Human (Homo sapiens ) [TaxId: 9606 ], Baker's yeast (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Zd5l5pz_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome alpha subunit (non-catalytic) Baker's yeast (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], Human (Homo sapiens ) [TaxId: 9606 ], Baker's yeast (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], Human (Homo sapiens ) [TaxId: 9606 ], Baker's yeast (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Md5l5pm_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits automated matches (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)
Nd5l5pn_ Alpha and beta proteins (a+b) Ntn hydrolase-like N-terminal nucleophile aminohydrolases (Ntn hydrolases) Proteasome subunits Proteasome beta subunit (catalytic) (Saccharomyces cerevisiae S288C ) [TaxId: 559292 ], SCOPe (2.08)

Domain Annotation: SCOP2 Classification SCOP2 Database Homepage

ChainsTypeFamily Name Domain Identifier Family IdentifierProvenance Source (Version)
ASCOP2B SuperfamilyClass II glutamine amidotransferases 8064048 3000131 SCOP2B (2022-06-29)
OSCOP2B SuperfamilyClass II glutamine amidotransferases 8064048 3000131 SCOP2B (2022-06-29)
BSCOP2B SuperfamilyClass II glutamine amidotransferases 8064020 3000131 SCOP2B (2022-06-29)
PSCOP2B SuperfamilyClass II glutamine amidotransferases 8064020 3000131 SCOP2B (2022-06-29)
CSCOP2B SuperfamilyClass II glutamine amidotransferases 8064012 3000131 SCOP2B (2022-06-29)
QSCOP2B SuperfamilyClass II glutamine amidotransferases 8064012 3000131 SCOP2B (2022-06-29)
DSCOP2B SuperfamilyClass II glutamine amidotransferases 8064026 3000131 SCOP2B (2022-06-29)
RSCOP2B SuperfamilyClass II glutamine amidotransferases 8064026 3000131 SCOP2B (2022-06-29)
ESCOP2B SuperfamilyClass II glutamine amidotransferases 8064066 3000131 SCOP2B (2022-06-29)
SSCOP2B SuperfamilyClass II glutamine amidotransferases 8064066 3000131 SCOP2B (2022-06-29)
FSCOP2B SuperfamilyClass II glutamine amidotransferases 8079169 3000131 SCOP2B (2022-06-29)
TSCOP2B SuperfamilyClass II glutamine amidotransferases 8079169 3000131 SCOP2B (2022-06-29)
GSCOP2B SuperfamilyClass II glutamine amidotransferases 8036842 3000131 SCOP2B (2022-06-29)
USCOP2B SuperfamilyClass II glutamine amidotransferases 8036842 3000131 SCOP2B (2022-06-29)
BA [auth b]SCOP2B SuperfamilyClass II glutamine amidotransferases 8036787 3000131 SCOP2B (2022-06-29)
NSCOP2B SuperfamilyClass II glutamine amidotransferases 8036787 3000131 SCOP2B (2022-06-29)

Domain Annotation: ECOD Classification ECOD Database Homepage

ChainsFamily NameDomain Identifier ArchitecturePossible HomologyHomologyTopologyFamilyProvenance Source (Version)
AProteasomee5l5pA1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
OProteasomee5l5pO1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
BProteasomee5l5pB1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
PProteasomee5l5pP1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
CProteasomee5l5pC1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
QProteasomee5l5pQ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
DProteasomee5l5pD1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
RProteasomee5l5pR1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
EProteasomee5l5pE1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
SProteasomee5l5pS1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
FProteasomee5l5pF1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
TProteasomee5l5pT1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
GProteasomee5l5pG1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
UProteasomee5l5pU1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
HProteasomee5l5pH1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
VProteasomee5l5pV1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
WProteasomee5l5pW1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
IProteasomee5l5pI1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
XProteasomee5l5pX1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
JProteasomee5l5pJ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
YProteasomee5l5pY1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
KProteasomee5l5pK1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
LProteasomee5l5pL1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
ZProteasomee5l5pZ1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
MProteasomee5l5pM1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
AA [auth a]Proteasomee5l5pa1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
BA [auth b]Proteasomee5l5pb1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)
NProteasomee5l5pN1 A: a+b four layersX: Ntn/PP2CH: NtnT: Proteasome subunitsF: ProteasomeECOD (1.6)

Domain Annotation: CATH CATH Database Homepage

ChainDomainClassArchitectureTopologyHomologyProvenance Source (Version)
A3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
O3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
B3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
P3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
C3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Q3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
D3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
R3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
E3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
S3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
F3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
T3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
G3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
U3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
H3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
V3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
W3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
I3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
X3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
J3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Y3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
K3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
L3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
Z3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
M3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
AA [auth a]3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
BA [auth b]3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)
N3.60.20.10 Alpha Beta 4-Layer Sandwich Glutamine Phosphoribosylpyrophosphate, subunit 1, domain 1 Aminohydrolase, N-terminal nucleophile (Ntn) domainCATH (4.3.0)

Protein Family Annotation Pfam Database Homepage

ChainsAccessionNameDescriptionCommentsSource
A, O
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
A, O
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
B, P
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
B, P
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
C, Q
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
C, Q
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
D, R
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
E, S
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
E, S
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
F, T
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
F, T
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
G, U
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
G, U
PF10584Proteasome subunit A N-terminal signature (Proteasome_A_N)Proteasome subunit A N-terminal signature- Family
H, V
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
H, V
PF12465Proteasome beta subunits C terminal (Pr_beta_C)Proteasome beta subunits C terminal- Family
I, W
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
J, X
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
K, Y
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
L, Z
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
AA [auth a],
M
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain
BA [auth b],
N
PF00227Proteasome subunit (Proteasome)Proteasome subunitThe proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity ...The proteasome is a multisubunit structure that degrades proteins. Protein degradation is an essential component of regulation because proteins can become misfolded, damaged, or unnecessary. Proteasomes and their homologues vary greatly in complexity: from HslV (heat shock locus v), which is encoded by 1 gene in bacteria, to the eukaryotic 20S proteasome, which is encoded by more than 14 genes [1]. Recently evidence of two novel groups of bacterial proteasomes was proposed. The first is Anbu, which is sparsely distributed among cyanobacteria and proteobacteria [1]. The second is call beta-proteobacteria proteasome homologue (BPH) [1].
Domain

Gene Ontology: Gene Product Annotation Gene Ontology Database Homepage

ChainsPolymerMolecular FunctionBiological ProcessCellular Component
A, O
Proteasome subunit alpha type-2-
B, P
Proteasome subunit alpha type-3-
C, Q
Proteasome subunit alpha type-4-
D, R
Proteasome subunit alpha type-5-
E, S
Proteasome subunit alpha type-6-
F, T
Probable proteasome subunit alpha type-7
G, U
Proteasome subunit alpha type-1-
H, V
Proteasome subunit beta type-2
I, W
Proteasome subunit beta type-3
J, X
Proteasome subunit beta type-4
K, Y
Proteasome subunit beta type-8,Proteasome subunit beta type-5
L, Z
Proteasome subunit beta type-6,Proteasome subunit beta type-1,Proteasome subunit beta type-6,Proteasome subunit beta type-1,Proteasome subunit beta type-6-
AA [auth a],
M
Proteasome subunit beta type-7-
BA [auth b],
N
Proteasome subunit beta type-1

InterPro: Protein Family Classification InterPro Database Homepage

ChainsAccessionNameType
A, O
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
A, O
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
A, O
IPR050115Proteasome subunit alphaFamily
A, O
IPR023332Proteasome alpha-type subunitFamily
A, O
IPR001353Proteasome, subunit alpha/betaFamily
B, P
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
B, P
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
B, P
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
B, P
IPR050115Proteasome subunit alphaFamily
B, P
IPR023332Proteasome alpha-type subunitFamily
B, P
IPR001353Proteasome, subunit alpha/betaFamily
C, Q
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
C, Q
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
C, Q
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
C, Q
IPR050115Proteasome subunit alphaFamily
C, Q
IPR023332Proteasome alpha-type subunitFamily
C, Q
IPR001353Proteasome, subunit alpha/betaFamily
D, R
IPR033812Proteasome subunit alpha5Family
D, R
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
D, R
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
D, R
IPR050115Proteasome subunit alphaFamily
D, R
IPR023332Proteasome alpha-type subunitFamily
D, R
IPR001353Proteasome, subunit alpha/betaFamily
E, S
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
E, S
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
E, S
IPR050115Proteasome subunit alphaFamily
E, S
IPR023332Proteasome alpha-type subunitFamily
E, S
IPR001353Proteasome, subunit alpha/betaFamily
F, T
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
F, T
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
F, T
IPR050115Proteasome subunit alphaFamily
F, T
IPR023332Proteasome alpha-type subunitFamily
F, T
IPR001353Proteasome, subunit alpha/betaFamily
G, U
IPR000426Proteasome alpha-subunit, N-terminal domainDomain
G, U
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
G, U
IPR050115Proteasome subunit alphaFamily
G, U
IPR023332Proteasome alpha-type subunitFamily
G, U
IPR001353Proteasome, subunit alpha/betaFamily
G, U
IPR034642Proteasome subunit alpha6Family
H, V
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
H, V
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
H, V
IPR024689Proteasome beta subunit, C-terminalDomain
H, V
IPR023333Proteasome B-type subunitFamily
H, V
IPR001353Proteasome, subunit alpha/betaFamily
H, V
IPR000243Peptidase T1A, proteasome beta-subunitFamily
I, W
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
I, W
IPR023333Proteasome B-type subunitFamily
I, W
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
I, W
IPR001353Proteasome, subunit alpha/betaFamily
I, W
IPR033811Proteasome beta 3 subunitFamily
J, X
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
J, X
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
J, X
IPR023333Proteasome B-type subunitFamily
J, X
IPR050115Proteasome subunit alphaFamily
J, X
IPR001353Proteasome, subunit alpha/betaFamily
J, X
IPR035206Proteasome subunit beta 2Family
K, Y
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
K, Y
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
K, Y
IPR023333Proteasome B-type subunitFamily
K, Y
IPR001353Proteasome, subunit alpha/betaFamily
K, Y
IPR000243Peptidase T1A, proteasome beta-subunitFamily
K, Y
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
K, Y
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
K, Y
IPR023333Proteasome B-type subunitFamily
K, Y
IPR001353Proteasome, subunit alpha/betaFamily
K, Y
IPR000243Peptidase T1A, proteasome beta-subunitFamily
L, Z
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
L, Z
IPR023333Proteasome B-type subunitFamily
L, Z
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
L, Z
IPR001353Proteasome, subunit alpha/betaFamily
L, Z
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
L, Z
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
L, Z
IPR023333Proteasome B-type subunitFamily
L, Z
IPR001353Proteasome, subunit alpha/betaFamily
AA [auth a],
M
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
AA [auth a],
M
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
AA [auth a],
M
IPR023333Proteasome B-type subunitFamily
AA [auth a],
M
IPR016295Proteasome subunit beta 4Family
AA [auth a],
M
IPR001353Proteasome, subunit alpha/betaFamily
BA [auth b],
N
IPR016050Proteasome beta-type subunit, conserved siteConserved Site
BA [auth b],
N
IPR029055Nucleophile aminohydrolases, N-terminalHomologous Superfamily
BA [auth b],
N
IPR023333Proteasome B-type subunitFamily
BA [auth b],
N
IPR001353Proteasome, subunit alpha/betaFamily
BA [auth b],
N
IPR000243Peptidase T1A, proteasome beta-subunitFamily

Pharos: Disease Associations Pharos Homepage Annotation

ChainsDrug Target  Associated Disease
K, Y
PharosP28062
L, Z
PharosP20618