Histones can be reversibly acetylated on several lysine residues. Regulation of transcription is caused in part by this mechanism. Histone deacetylases catalyse the removal of the acetyl group. Histone deacetylases are related to other proteins [1]. ...
Histones can be reversibly acetylated on several lysine residues. Regulation of transcription is caused in part by this mechanism. Histone deacetylases catalyse the removal of the acetyl group. Histone deacetylases are related to other proteins [1].
This is the N-terminal domain of DNTTIP1, a protein that forms part of a novel histone deacetylase complex present in Homo sapiens. Histone deacetylase complexes comprise DNTTIP1, histone deacetylase (HDAC) and the repressor protein MIDEAS. The acety ...
This is the N-terminal domain of DNTTIP1, a protein that forms part of a novel histone deacetylase complex present in Homo sapiens. Histone deacetylase complexes comprise DNTTIP1, histone deacetylase (HDAC) and the repressor protein MIDEAS. The acetylation of histone tails plays a critical role in determining the accessibility of chromatin to transcriptional regulators and RNA polymerase complexes. This N-terminal domain is responsible for dimerization of histone deacetylase 1(HDAC1). The N-terminal domain also interacts and mediates the assembly of the HDAC1- MIDEAS complex [1].