1XGD

Apo R268A human aldose reductase


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.209 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.170 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

The structure of Apo R268A human aldose reductase: Hinges and latches that control the kinetic mechanism

Bohren, K.M.Brownlee, J.M.Milne, A.C.Gabbay, K.H.Harrison, D.H.T.

(2005) Biochim Biophys Acta 1748: 201-212

  • DOI: https://doi.org/10.1016/j.bbapap.2005.01.006
  • Primary Citation of Related Structures:  
    1XGD

  • PubMed Abstract: 

    Aldose reductase (AR) catalyzes the NADPH-dependent reduction of glucose and other sugars to their respective sugar alcohols. The NADP+/NADPH exchange is the rate-limiting step for this enzyme and contributes in varying degrees to the catalytic rates of other aldo-keto reductase superfamily enzymes. The mutation of Arg268 to alanine in human recombinant AR removes one of the ligands of the C2-phosphate of NADP+ and markedly reduces the interaction of the apoenzyme with the nucleotide. The crystal structure of human R268A apo-aldose reductase determined to a resolution of 2.1 A is described. The R268A mutant enzyme has similar kinetic parameters to the wild-type enzyme for aldehyde substrates, yet has greatly reduced affinity for the nucleotide substrate which greatly facilitates its crystallization in the apoenzyme form. The apo-structure shows that a high temperature factor loop (between residues 214 and 226) is displaced by as much as 17 A in a rigid body fashion about Gly213 and Ser226 in the absence of the nucleotide cofactor as compared to the wild-type holoenzyme structure. Several factors act to stabilize the NADPH-holding loop in either the 'open' or 'closed' conformations: (1) the presence and interactions of the nucleotide cofactor, (2) the residues surrounding the Gly213 and Ser226 hinges which form unique hydrogen bonds in the 'open' or 'closed' structure, and (3) the Trp219 "latch" residue which interacts with an arginine residue, Arg293, in the 'open' conformation or with a cysteine residue, Cys298, in the 'closed' conformation. Several mutations in and around the high temperature factor loop are examined to elucidate the role of the loop in the mechanism by which aldose reductase binds and releases its nucleotide substrate.


  • Organizational Affiliation

    The Harry B. and Aileen Gordon Diabetes Research Laboratory, Molecular Diabetes and Metabolism Section, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Aldose reductase315Homo sapiensMutation(s): 1 
Gene Names: AKR1B1ALDR1
EC: 1.1.1.21 (PDB Primary Data), 1.1.1.372 (UniProt), 1.1.1.300 (UniProt), 1.1.1.54 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for P15121 (Homo sapiens)
Explore P15121 
Go to UniProtKB:  P15121
PHAROS:  P15121
GTEx:  ENSG00000085662 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP15121
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.209 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.170 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 64.18α = 90
b = 64.18β = 90
c = 176.633γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
X-PLORrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-03-29
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2021-10-20
    Changes: Database references
  • Version 1.4: 2023-08-23
    Changes: Data collection, Refinement description