Function and solution structure of Huwentoxin-X, a specific blocker of N-type calcium channels, from the Chinese bird spider Ornithoctonus huwena
Liu, Z., Dai, J., Dai, L., Deng, M., Hu, Z., Hu, W., Liang, S.(2006) J Biol Chem 281: 8628-8635
- PubMed: 16439354
- DOI: https://doi.org/10.1074/jbc.M513542200
- Primary Citation of Related Structures:
1Y29 - PubMed Abstract:
Huwentoxin-X (HWTX-X) is a novel peptide toxin, purified from the venom of the spider Ornithoctonus huwena. It comprises 28 amino acid residues including six cysteine residues as disulfide bridges linked in the pattern of I-IV, II-V, and III-VI. Its cDNA, determined by rapid amplification of 3' and 5' cDNA ends, encodes a 65-residue prepropeptide. HWTX-X shares low sequence homology with omega-conotoxins GVIA and MVIIA, two well known blockers of N-type Ca2+ channels. Nevertheless, whole cell studies indicate that it can block N-type Ca2+ channels in rat dorsal root ganglion cells (IC50 40 nm) and the blockage by HWTX-X is completely reversible. The rank order of specificity for N-type Ca2+ channels is GVIA approximately HWTX-X > MVIIA. In contrast to GVIA and MVIIA, HWTX-X had no detectable effect on the twitch response of rat vas deferens to low frequency electrical stimulation, indicating that HWTX-X has different selectivity for isoforms of N-type Ca2+ channels, compared with GVIA or MVIIA. A comparison of the structures of HWTX-X and GVIA reveals that they not only adopt a common structural motif (inhibitor cystine knot), but also have a similar functional motif, a binding surface formed by the critical residue Tyr, and several basic residues. However, the dissimilarities of their binding surfaces provide some insights into their different selectivities for isoforms of N-type Ca2+ channels.
Organizational Affiliation:
College of Life Sciences, Peking University, Beijing 100087, China.