2AIO

Metallo beta lactamase L1 from Stenotrophomonas maltophilia complexed with hydrolyzed moxalactam


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 
    0.200 (Depositor), 0.200 (DCC) 
  • R-Value Work: 
    0.171 (Depositor), 0.170 (DCC) 
  • R-Value Observed: 
    0.173 (Depositor) 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted MX1Click on this verticalbar to view details

This is version 1.4 of the entry. See complete history


Literature

Antibiotic Recognition by Binuclear Metallo-beta-Lactamases Revealed by X-ray Crystallography

Spencer, J.Read, J.Sessions, R.B.Howell, S.Blackburn, G.M.Gamblin, S.J.

(2005) J Am Chem Soc 127: 14439-14444

  • DOI: https://doi.org/10.1021/ja0536062
  • Primary Citation of Related Structures:  
    2AIO

  • PubMed Abstract: 

    Metallo-beta-lactamases are zinc-dependent enzymes responsible for resistance to beta-lactam antibiotics in a variety of host bacteria, usually Gram-negative species that act as opportunist pathogens. They hydrolyze all classes of beta-lactam antibiotics, including carbapenems, and escape the action of available beta-lactamase inhibitors. Efforts to develop effective inhibitors have been hampered by the lack of structural information regarding how these enzymes recognize and turn over beta-lactam substrates. We report here the crystal structure of the Stenotrophomonas maltophilia L1 enzyme in complex with the hydrolysis product of the 7alpha-methoxyoxacephem, moxalactam. The on-enzyme complex is a 3'-exo-methylene species generated by elimination of the 1-methyltetrazolyl-5-thiolate anion from the 3'-methyl group. Moxalactam binding to L1 involves direct interaction of the two active site zinc ions with the beta-lactam amide and C4 carboxylate, groups that are common to all beta-lactam substrates. The 7beta-[(4-hydroxyphenyl)malonyl]-amino substituent makes limited hydrophobic and hydrogen bonding contacts with the active site groove. The mode of binding provides strong evidence that a water molecule situated between the two metal ions is the most likely nucleophile in the hydrolytic reaction. These data suggest a reaction mechanism for metallo-beta-lactamases in which both metal ions contribute to catalysis by activating the bridging water/hydroxide nucleophile, polarizing the substrate amide bond for attack and stabilizing anionic nitrogen intermediates. The structure illustrates how a binuclear zinc site confers upon metallo-beta-lactamases the ability both to recognize and efficiently hydrolyze a wide variety of beta-lactam substrates.


  • Organizational Affiliation

    Departments of Cellular and Molecular Medicine and Biochemistry, University of Bristol School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Metallo-beta-lactamase L1269Stenotrophomonas maltophiliaMutation(s): 0 
Gene Names: blaL1
EC: 3.5.2.6
UniProt
Find proteins for P52700 (Stenotrophomonas maltophilia)
Explore P52700 
Go to UniProtKB:  P52700
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP52700
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free:  0.200 (Depositor), 0.200 (DCC) 
  • R-Value Work:  0.171 (Depositor), 0.170 (DCC) 
  • R-Value Observed: 0.173 (Depositor) 
Space Group: P 64 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 105.024α = 90
b = 105.024β = 90
c = 98.23γ = 120
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted MX1Click on this verticalbar to view details

Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-10-11
    Type: Initial release
  • Version 1.1: 2007-10-16
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.3: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description, Structure summary
  • Version 1.4: 2024-11-13
    Changes: Structure summary