Structural insights into histone demethylation by JMJD2 family members
Chen, Z., Zang, J., Whetstine, J., Hong, X., Davrazou, F., Kutateladze, T.G., Simpson, M., Mao, Q., Pan, C.H., Dai, S., Hagman, J., Hansen, K., Shi, Y., Zhang, G.(2006) Cell 125: 691-702
- PubMed: 16677698 
- DOI: https://doi.org/10.1016/j.cell.2006.04.024
- Primary Citation of Related Structures:  
2GP3, 2GP5 - PubMed Abstract: 
Posttranslational modifications of histones regulate chromatin structure and gene expression. Histone demethylases, members of a newly emerging transcription-factor family, remove methyl groups from the lysine residues of the histone tails and thereby regulate the transcriptional activity of target genes. JmjC-domain-containing proteins have been predicted to be demethylases. For example, the JmjC-containing protein JMJD2A has been characterized as a H3-K9me3- and H3-K36me3-specific demethylase. Here, structures of the catalytic-core domain of JMJD2A with and without alpha-ketoglutarate in the presence of Fe2+ have been determined by X-ray crystallography. The structure of the core domain, consisting of the JmjN domain, the JmjC domain, the C-terminal domain, and a zinc-finger motif, revealed the unique elements that form a potential substrate binding pocket. Sited-directed mutagenesis in conjunction with demethylase activity assays allowed us to propose a molecular model for substrate selection by the JMJD2 histone demethylase family.
Organizational Affiliation: 
Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA.