2M07

NMR structure of OmpX in DPC micelles


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.

Hagn, F.Etzkorn, M.Raschle, T.Wagner, G.

(2013) J Am Chem Soc 135: 1919-1925

  • DOI: https://doi.org/10.1021/ja310901f
  • Primary Citation of Related Structures:  
    2M06, 2M07

  • PubMed Abstract: 

    Structural studies of membrane proteins are still hampered by difficulties of finding appropriate membrane-mimicking media that maintain protein structure and function. Phospholipid nanodiscs seem promising to overcome the intrinsic problems of detergent-containing environments. While nanodiscs can offer a near-native environment, the large particle size complicates their routine use in the structural analysis of membrane proteins by solution NMR. Here, we introduce nanodiscs assembled from shorter ApoA-I protein variants that are of markedly smaller diameter and show that the resulting discs provide critical improvements for the structure determination of membrane proteins by NMR. Using the bacterial outer-membrane protein OmpX as an example, we demonstrate that the combination of small nanodisc size, high deuteration levels of protein and lipids, and the use of advanced non-uniform NMR sampling methods enable the NMR resonance assignment as well as the high-resolution structure determination of polytopic membrane proteins in a detergent-free, near-native lipid bilayer setting. By applying this method to bacteriorhodopsin, we show that our smaller nanodiscs can also be beneficial for the structural characterization of the important class of seven-transmembrane helical proteins. Our set of engineered nanodiscs of subsequently smaller diameters can be used to screen for optimal NMR spectral quality for small to medium-sized membrane proteins while still providing a functional environment. In addition to their key improvements for de novo structure determination, due to their smaller size these nanodiscs enable the investigation of interactions between membrane proteins and their (soluble) partner proteins, unbiased by the presence of detergents that might disrupt biologically relevant interactions.


  • Organizational Affiliation

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Outer membrane protein X148Escherichia coli K-12Mutation(s): 0 
Gene Names: ompXybiGb0814JW0799
Membrane Entity: Yes 
UniProt
Find proteins for P0A917 (Escherichia coli (strain K12))
Explore P0A917 
Go to UniProtKB:  P0A917
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A917
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the least restraint violations 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-12-12
    Type: Initial release
  • Version 1.1: 2013-01-23
    Changes: Database references
  • Version 1.2: 2013-02-20
    Changes: Database references
  • Version 1.3: 2023-06-14
    Changes: Data collection, Database references, Other
  • Version 1.4: 2024-05-15
    Changes: Data collection, Database references