2WQE

Structure of S155R Aurora-A somatic mutant


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.251 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.206 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

A Cancer Associated Aurora-A Mutant is Mislocalised and Misregulated due to Loss of Interaction with Tpx2.

Bibby, R.A.Tang, C.Faisal, A.Drosopoulos, K.Lubbe, S.Houlston, R.Bayliss, R.Linardopoulos, S.

(2009) J Biol Chem 284: 33177

  • DOI: https://doi.org/10.1074/jbc.M109.032722
  • Primary Citation of Related Structures:  
    2WQE

  • PubMed Abstract: 

    Mutations in protein kinases can drive cancer through alterations of the kinase activity or by uncoupling kinase activity from regulation. Changes to protein expression in Aurora A, a mitotic Ser/Thr kinase, are associated with the development of several human cancers, but the effects of somatic cancer-associated mutations have not been determined. In this study we show that Aurora A kinase activity is altered in different ways in three somatic cancer-associated mutations located within the catalytic domain; Aurora A(V174M) shows constitutively increased kinase activity, Aurora A(S155R) activity is decreased primarily due to misregulation, and Aurora A(S361*) activity is ablated due to loss of structural integrity. These alterations suggest vastly different mechanisms for the role of these three mutations in human cancer. We have further characterized the Aurora A(S155R) mutant protein, found that its reduced cellular activity and mislocalization are due to loss of interaction with TPX2, and deciphered the structural basis of the disruption at 2.5 A resolution. Previous studies have shown that disruption of the Aurora A/TPX2 interaction results in defective spindles that generate chromosomal abnormalities. In a panel of 40 samples from microsatellite instability-positive colon cancer patients, we found one example in which the tumor contained only Aurora A(S155R), whereas the normal tissue contained only wild-type Aurora A. We propose that the S155R mutation is an example of a somatic mutation associated with this tumor type, albeit at modest frequency, that could promote aneuploidy through the loss of regulated interactions between Aurora A and its protein partners.


  • Organizational Affiliation

    Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, UK.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
SERINE/THREONINE-PROTEIN KINASE 6262Homo sapiensMutation(s): 1 
EC: 2.7.11.1
UniProt & NIH Common Fund Data Resources
Find proteins for O14965 (Homo sapiens)
Explore O14965 
Go to UniProtKB:  O14965
PHAROS:  O14965
GTEx:  ENSG00000087586 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO14965
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.251 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.206 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 85.575α = 90
b = 85.575β = 90
c = 79.949γ = 90
Software Package:
Software NamePurpose
PHENIXrefinement
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-09-29
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-20
    Changes: Data collection, Database references, Derived calculations, Other, Refinement description