3FRE

S. aureus DHFR complexed with NADPH and TMP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.280 
  • R-Value Work: 0.239 
  • R-Value Observed: 0.241 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Increased hydrophobic interactions of iclaprim with Staphylococcus aureus dihydrofolate reductase are responsible for the increase in affinity and antibacterial activity

Oefner, C.Bandera, M.Haldimann, A.Laue, H.Schulz, H.Mukhija, S.Parisi, S.Weiss, L.Lociuro, S.Dale, G.E.

(2009) J Antimicrob Chemother 63: 687-698

  • DOI: https://doi.org/10.1093/jac/dkp024
  • Primary Citation of Related Structures:  
    3FRA, 3FRB, 3FRD, 3FRE, 3FRF

  • PubMed Abstract: 

    Iclaprim is a novel 2,4-diaminopyrimidine that exhibits potent, rapid bactericidal activity against major Gram-positive pathogens, including methicillin-susceptible Staphylococcus aureus and methicillin-resistant S. aureus, and is currently in clinical development for the treatment of complicated skin and skin structure infections. An understanding of the known mechanism of resistance to trimethoprim led to the design of this new inhibitor, with improved affinity towards dihydrofolate reductase (DHFR) from S. aureus and clinically useful activity against S. aureus including isolates resistant to trimethoprim. The objective of this study was to characterize the mode of action of iclaprim and its inhibitory properties against DHFR. The mode of action of iclaprim was assessed by enzymatic analysis, direct binding studies, macromolecular synthesis profiles, synergy and antagonism studies to define its role as an inhibitor of DHFR. The binding properties of iclaprim to DHFR were compared with those of trimethoprim by X-ray crystallography. The enzymatic properties, direct binding and X-ray crystallographic studies delineated the mode of interaction with DHFR and the reason for the increased affinity of iclaprim towards the enzyme. The effect of iclaprim on bacterial physiology suggests that iclaprim behaves as a classical antibacterial DHFR inhibitor, as previously documented for trimethoprim. Iclaprim binds and inhibits bacterial DHFR in a similar manner to trimethoprim. However, the increased hydrophobic interactions between iclaprim and DHFR account for increased affinity and, unlike trimethoprim, enable iclaprim to inhibit even the resistant enzyme with nanomolar affinity, thus overcoming the mechanism of trimethoprim resistance. The increased antibacterial activity and lower propensity for resistance make iclaprim a clinically promising and useful inhibitor.


  • Organizational Affiliation

    Arpida AG, Duggingerstrasse 23, CH-4153 Reinach, Switzerland.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Dihydrofolate reductaseA [auth X]158Staphylococcus aureusMutation(s): 0 
Gene Names: folA
EC: 1.5.1.3
UniProt
Find proteins for P0A017 (Staphylococcus aureus)
Explore P0A017 
Go to UniProtKB:  P0A017
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP0A017
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NDP
Query on NDP

Download Ideal Coordinates CCD File 
B [auth X]NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE
C21 H30 N7 O17 P3
ACFIXJIJDZMPPO-NNYOXOHSSA-N
TOP
Query on TOP

Download Ideal Coordinates CCD File 
C [auth X]TRIMETHOPRIM
C14 H18 N4 O3
IEDVJHCEMCRBQM-UHFFFAOYSA-N
Binding Affinity Annotations 
IDSourceBinding Affinity
TOP BindingDB:  3FRE Ki: min: 1.2, max: 5500 (nM) from 7 assay(s)
IC50: min: 7, max: 4.50e+4 (nM) from 5 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.280 
  • R-Value Work: 0.239 
  • R-Value Observed: 0.241 
  • Space Group: P 61 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 79.328α = 90
b = 79.328β = 90
c = 107.781γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
AMoREphasing
REFMACrefinement
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-01-12
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2013-11-20
    Changes: Non-polymer description
  • Version 1.3: 2024-03-20
    Changes: Data collection, Database references, Derived calculations