3P1C

Crystal structure of the bromodomain of human CREBBP in complex with acetylated lysine


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.82 Å
  • R-Value Free: 
    0.218 (Depositor), 0.230 (DCC) 
  • R-Value Work: 
    0.166 (Depositor), 0.170 (DCC) 
  • R-Value Observed: 
    0.168 (Depositor) 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted ALYClick on this verticalbar to view details

This is version 1.5 of the entry. See complete history


Literature

Histone recognition and large-scale structural analysis of the human bromodomain family.

Filippakopoulos, P.Picaud, S.Mangos, M.Keates, T.Lambert, J.P.Barsyte-Lovejoy, D.Felletar, I.Volkmer, R.Muller, S.Pawson, T.Gingras, A.C.Arrowsmith, C.H.Knapp, S.

(2012) Cell 149: 214-231

  • DOI: https://doi.org/10.1016/j.cell.2012.02.013
  • Primary Citation of Related Structures:  
    2NXB, 2OO1, 2OSS, 2OUO, 2RFJ, 3D7C, 3DAI, 3DWY, 3GG3, 3HME, 3HMF, 3HMH, 3I3J, 3IU5, 3IU6, 3LXJ, 3MB3, 3MB4, 3MQM, 3NXB, 3P1C, 3P1D, 3Q2E, 3RCW, 3TLP, 3UV2, 3UV4, 3UV5, 3UVD, 3UVW, 3UVX, 3UVY, 3UW9

  • PubMed Abstract: 

    Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.


  • Organizational Affiliation

    Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7LD, UK. panagis.filippakopoulos@sgc.ox.ac.uk


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CREB-binding protein
A, B
119Homo sapiensMutation(s): 0 
Gene Names: CBPCREBBP
EC: 2.3.1.48 (PDB Primary Data), 2.3.1 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for Q92793 (Homo sapiens)
Explore Q92793 
Go to UniProtKB:  Q92793
PHAROS:  Q92793
GTEx:  ENSG00000005339 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ92793
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.82 Å
  • R-Value Free:  0.218 (Depositor), 0.230 (DCC) 
  • R-Value Work:  0.166 (Depositor), 0.170 (DCC) 
  • R-Value Observed: 0.168 (Depositor) 
Space Group: H 3
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 121.687α = 90
b = 121.687β = 90
c = 39.955γ = 120
Software Package:
Software NamePurpose
SCALAdata scaling
PHASERphasing
REFMACrefinement
PDB_EXTRACTdata extraction
CrystalCleardata collection
MOSFLMdata reduction

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 

Created with Raphaël 2.3.0Worse 01 BetterLigand structure goodness of fit to experimental dataBest fitted ALYClick on this verticalbar to view details

Entry History 

Revision History  (Full details and data files)

  • Version 1.0: 2010-11-24
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2012-04-11
    Changes: Database references
  • Version 1.3: 2018-01-31
    Changes: Structure summary
  • Version 1.4: 2023-09-06
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.5: 2023-12-06
    Changes: Data collection