4F92

Brr2 Helicase Region S1087L


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.66 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.212 
  • R-Value Observed: 0.214 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome.

Santos, K.F.Jovin, S.M.Weber, G.Pena, V.Luhrmann, R.Wahl, M.C.

(2012) Proc Natl Acad Sci U S A 109: 17418-17423

  • DOI: https://doi.org/10.1073/pnas.1208098109
  • Primary Citation of Related Structures:  
    4F91, 4F92, 4F93

  • PubMed Abstract: 

    Assembly of a spliceosome, catalyzing precursor-messenger RNA splicing, involves multiple RNA-protein remodeling steps, driven by eight conserved DEXD/H-box RNA helicases. The 250-kDa Brr2 enzyme, which is essential for U4/U6 di-small nuclear ribonucleoprotein disruption during spliceosome catalytic activation and for spliceosome disassembly, is the only member of this group that is permanently associated with the spliceosome, thus requiring its faithful regulation. At the same time, Brr2 represents a unique subclass of superfamily 2 nucleic acid helicases, containing tandem helicase cassettes. Presently, the mechanistic and regulatory consequences of this unconventional architecture are unknown. Here we show that in human Brr2, two ring-like helicase cassettes intimately interact and functionally cooperate and how retinitis pigmentosa-linked Brr2 mutations interfere with the enzyme's function. Only the N-terminal cassette harbors ATPase and helicase activities in isolation. Comparison with other helicases and mutational analyses show how it threads single-stranded RNA, and structural features suggest how it can load onto an internal region of U4/U6 di-snRNA. Although the C-terminal cassette does not seem to engage RNA in the same fashion, it binds ATP and strongly stimulates the N-terminal helicase. Mutations at the cassette interface, in an intercassette linker or in the C-terminal ATP pocket, affect this cross-talk in diverse ways. Together, our results reveal the structural and functional interplay between two helicase cassettes in a tandem superfamily 2 enzyme and point to several sites through which Brr2 activity may be regulated.


  • Organizational Affiliation

    Fachbereich Biologie/Chemie/Pharmazie, Abteilung Strukturbiochemie, Freie Universität Berlin, D-14195 Berlin, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
U5 small nuclear ribonucleoprotein 200 kDa helicaseA [auth B]1,724Homo sapiensMutation(s): 1 
Gene Names: SNRNP200ASCC3L1HELIC2KIAA0788
EC: 3.6.4.13
UniProt & NIH Common Fund Data Resources
Find proteins for O75643 (Homo sapiens)
Explore O75643 
Go to UniProtKB:  O75643
PHAROS:  O75643
GTEx:  ENSG00000144028 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO75643
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
SAN
Query on SAN

Download Ideal Coordinates CCD File 
B
SULFANILAMIDE
C6 H8 N2 O2 S
FDDDEECHVMSUSB-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.66 Å
  • R-Value Free: 0.259 
  • R-Value Work: 0.212 
  • R-Value Observed: 0.214 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 146.148α = 90
b = 149.541β = 120.33
c = 141.324γ = 90
Software Package:
Software NamePurpose
MAR345dtbdata collection
MOLREPphasing
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-10-17
    Type: Initial release
  • Version 1.1: 2012-10-24
    Changes: Database references
  • Version 1.2: 2012-11-07
    Changes: Database references
  • Version 1.3: 2024-02-28
    Changes: Data collection, Database references, Derived calculations