Aminoglycosides are widely used antibiotics that cause messenger RNA decoding errors, block mRNA and transfer RNA translocation, and inhibit ribosome recycling. Ribosome recycling follows the termination of protein synthesis and is aided by ribosome recycling factor (RRF) in bacteria. The molecular mechanism by which aminoglycosides inhibit ribosome recycling is unknown. Here we show in X-ray crystal structures of the Escherichia coli 70S ribosome that RRF binding causes RNA helix H69 of the large ribosomal subunit, which is crucial for subunit association, to swing away from the subunit interface. Aminoglycosides bind to H69 and completely restore the contacts between ribosomal subunits that are disrupted by RRF. These results provide a structural explanation for aminoglycoside inhibition of ribosome recycling.
Organizational Affiliation:
Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
For questions/corrections to specific PDB entries, including citation updates: email deposit-help@mail.wwpdb.org
Thank you for providing your feedback! Someone will be in touch with you shortly. This window will automatically close in 5 seconds.
Apologies, our feedback server is currently unavailable and we are troubleshooting the issue. In the meantime, please copy and paste the below information into an email addressed to info@rcsb.org