Functional and structural basis of E. coli enolase inhibition by SF2312: a mimic of the carbanion intermediate.
Krucinska, J., Lombardo, M.N., Erlandsen, H., Hazeen, A., Duay, S.S., Pattis, J.G., Robinson, V.L., May, E.R., Wright, D.L.(2019) Sci Rep 9: 17106-17106
- PubMed: 31745118
- DOI: https://doi.org/10.1038/s41598-019-53301-3
- Primary Citation of Related Structures:
6D3Q, 6NPF - PubMed Abstract:
Many years ago, the natural secondary metabolite SF2312, produced by the actinomycete Micromonospora, was reported to display broad spectrum antibacterial properties against both Gram-positive and Gram-negative bacteria. Recent studies have revealed that SF2312, a natural phosphonic acid, functions as a potent inhibitor of human enolase. The mechanism of SF2312 inhibition of bacterial enolase and its role in bacterial growth and reproduction, however, have remained elusive. In this work, we detail a structural analysis of E. coli enolase bound to both SF2312 and its oxidized imide-form. Our studies support a model in which SF2312 acts as an analog of a high energy intermediate formed during the catalytic process. Biochemical, biophysical, computational and kinetic characterization of these compounds confirm that altering features characteristic of a putative carbanion (enolate) intermediate significantly reduces the potency of enzyme inhibition. When SF2312 is combined with fosfomycin in the presence of glucose-6 phosphate, significant synergy is observed. This suggests the two agents could be used as a potent combination, targeting distinct cellular mechanism for the treatment of bacterial infections. Together, our studies rationalize the structure-activity relationships for these phosphonates and validate enolase as a promising target for antibiotic discovery.
Organizational Affiliation:
Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, Connecticut, 06269, United States.