Structural and functional consequences of the STAT5BN642H driver mutation.
de Araujo, E.D., Erdogan, F., Neubauer, H.A., Meneksedag-Erol, D., Manaswiyoungkul, P., Eram, M.S., Seo, H.S., Qadree, A.K., Israelian, J., Orlova, A., Suske, T., Pham, H.T.T., Boersma, A., Tangermann, S., Kenner, L., Rulicke, T., Dong, A., Ravichandran, M., Brown, P.J., Audette, G.F., Rauscher, S., Dhe-Paganon, S., Moriggl, R., Gunning, P.T.(2019) Nat Commun 10: 2517-2517
- PubMed: 31175292 
- DOI: https://doi.org/10.1038/s41467-019-10422-7
- Primary Citation of Related Structures:  
6MBW, 6MBZ - PubMed Abstract: 
Hyper-activated STAT5B variants are high value oncology targets for pharmacologic intervention. STAT5B N642H , a frequently-occurring oncogenic driver mutation, promotes aggressive T-cell leukemia/lymphoma in patient carriers, although the molecular origins remain unclear. Herein, we emphasize the aggressive nature of STAT5B N642H in driving T-cell neoplasia upon hematopoietic expression in transgenic mice, revealing evidence of multiple T-cell subset organ infiltration. Notably, we demonstrate STAT5B N642H -driven transformation of γδ T-cells in in vivo syngeneic transplant models, comparable to STAT5B N642H patient γδ T-cell entities. Importantly, we present human STAT5B and STAT5B N642H crystal structures, which propose alternative mutation-mediated SH2 domain conformations. Our biophysical data suggests STAT5B N642H can adopt a hyper-activated and hyper-inactivated state with resistance to dephosphorylation. MD simulations support sustained interchain cross-domain interactions in STAT5B N642H , conferring kinetic stability to the mutant anti-parallel dimer. This study provides a molecular explanation for the STAT5B N642H activating potential, and insights into pre-clinical models for targeted intervention of hyper-activated STAT5B.
Organizational Affiliation: 
Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.