7OVS

Heterodimeric murine tRNA-guanine transglycosylase in the presence of Anderson-Evans type (TEW) and Strandberg type polyoxometalate (POM)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.242 
  • R-Value Work: 0.211 
  • R-Value Observed: 0.212 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Structural and Biochemical Investigation of the Heterodimeric Murine tRNA-Guanine Transglycosylase.

Sebastiani, M.Behrens, C.Dorr, S.Gerber, H.D.Benazza, R.Hernandez-Alba, O.Cianferani, S.Klebe, G.Heine, A.Reuter, K.

(2022) ACS Chem Biol 17: 2229-2247

  • DOI: https://doi.org/10.1021/acschembio.2c00368
  • Primary Citation of Related Structures:  
    6H62, 7B2I, 7OV9, 7OVO, 7OVS, 7OWZ

  • PubMed Abstract: 

    In tRNA Asp , tRNA Asn , tRNA Tyr , and tRNA His of most bacteria and eukaryotes, the anticodon wobble position may be occupied by the modified nucleoside queuosine, which affects the speed and the accuracy of translation. Since eukaryotes are not able to synthesize queuosine de novo, they have to salvage queuine (the queuosine base) as a micronutrient from food and/or the gut microbiome. The heterodimeric Zn 2+ containing enzyme tRNA-guanine transglycosylase (TGT) catalyzes the insertion of queuine into the above-named tRNAs in exchange for the genetically encoded guanine. This enzyme has attracted medical interest since it was shown to be potentially useful for the treatment of multiple sclerosis. In addition, TGT inactivation via gene knockout leads to the suppressed cell proliferation and migration of certain breast cancer cells, which may render this enzyme a potential target for the design of compounds supporting breast cancer therapy. As a prerequisite to fully exploit the medical potential of eukaryotic TGT, we have determined and analyzed a number of crystal structures of the functional murine TGT with and without bound queuine. In addition, we have investigated the importance of two residues of its non-catalytic subunit on dimer stability and determined the Michaelis-Menten parameters of murine TGT with respect to tRNA and several natural and artificial nucleobase substrates. Ultimately, on the basis of available TGT crystal structures, we provide an entirely conclusive reaction mechanism for this enzyme, which in detail explains why the TGT-catalyzed insertion of some nucleobases into tRNA occurs reversibly while that of others is irreversible.


  • Organizational Affiliation

    Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, D-35037 Marburg, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Queuine tRNA-ribosyltransferase accessory subunit 2419Mus musculusMutation(s): 0 
Gene Names: Qtrt2Qtrtd1
EC: 2.4.2.29
UniProt
Find proteins for B8ZXI1 (Mus musculus)
Explore B8ZXI1 
Go to UniProtKB:  B8ZXI1
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupB8ZXI1
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Queuine tRNA-ribosyltransferase catalytic subunit 1B [auth C]395Mus musculusMutation(s): 0 
Gene Names: Qtrt1TgtTgut
EC: 2.4.2.29
UniProt
Find proteins for Q9JMA2 (Mus musculus)
Explore Q9JMA2 
Go to UniProtKB:  Q9JMA2
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9JMA2
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.60 Å
  • R-Value Free: 0.242 
  • R-Value Work: 0.211 
  • R-Value Observed: 0.212 
  • Space Group: P 62 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 199.519α = 90
b = 199.519β = 90
c = 90.278γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
Cootmodel building
XDSdata reduction
XDSdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2022-06-22
    Type: Initial release
  • Version 1.1: 2023-06-28
    Changes: Database references
  • Version 1.2: 2024-02-07
    Changes: Data collection, Refinement description