2GQA

Structure of NADH-reduced SYE1, an OYE homologue from S. oneidensis


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.195 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.178 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Ligand-induced conformational changes in the capping subdomain of a bacterial old yellow enzyme homologue and conserved sequence fingerprints provide new insights into substrate binding.

van den Hemel, D.Brige, A.Savvides, S.N.Van Beeumen, J.

(2006) J Biol Chem 281: 28152-28161

  • DOI: https://doi.org/10.1074/jbc.M603946200
  • Primary Citation of Related Structures:  
    2GOU, 2GQ8, 2GQ9, 2GQA

  • PubMed Abstract: 

    We have recently reported that Shewanella oneidensis, a Gram-negative gamma-proteobacterium with a rich arsenal of redox proteins, possesses four old yellow enzyme (OYE) homologues. Here, we report a series of high resolution crystal structures for one of these OYEs, Shewanella yellow enzyme 1 (SYE1), in its oxidized form at 1.4A resolution, which binds a molecule of PEG 400 in the active site, and in its NADH-reduced and p-hydroxybenzaldehyde- and p-hydroxyacetophenone-bound forms at 1.7A resolution. Although the overall structure of SYE1 reveals a monomeric enzyme based on the alpha(8)beta(8) barrel scaffold observed for other OYEs, the active site exhibits a unique combination of features: a strongly butterfly-bent FMN cofactor both in the oxidized and NADH-reduced forms, a collapsed and narrow active site tunnel, and a novel combination of conserved residues involved in the binding of phenolic ligands. Furthermore, we identify a second p-hydroxybenzaldehyde-binding site in a hydrophobic cleft next to the entry of the active site tunnel in the capping subdomain, formed by a restructuring of Loop 3 to an "open" conformation. This constitutes the first evidence to date for the entire family of OYEs that Loop 3 may indeed play a dynamic role in ligand binding and thus provides insights into the elusive NADH complex and into substrate binding in general. Structure-based sequence alignments indicate that the novelties we observe in SYE1 are supported by conserved residues in a number of structurally uncharacterized OYEs from the beta- and gamma-proteobacteria, suggesting that SYE1 represents a new subfamily of bacterial OYEs.


  • Organizational Affiliation

    Department of Biochemistry, Physiology and Microbiology, Laboratory for Protein Biochemistry and Protein Engineering, K.L. Ledeganckstraat 35, Ghent University, 9000 Ghent, Belgium.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
oxidoreductase, FMN-binding365Shewanella oneidensis MR-1Mutation(s): 0 
UniProt
Find proteins for Q8EEC8 (Shewanella oneidensis (strain ATCC 700550 / JCM 31522 / CIP 106686 / LMG 19005 / NCIMB 14063 / MR-1))
Explore Q8EEC8 
Go to UniProtKB:  Q8EEC8
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8EEC8
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.195 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.178 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 48.2α = 90
b = 83.739β = 90
c = 88.1γ = 90
Software Package:
Software NamePurpose
CNSrefinement
PDB_EXTRACTdata extraction
SCALEPACKdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-07-25
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 1.3: 2017-10-18
    Changes: Refinement description
  • Version 1.4: 2024-02-14
    Changes: Data collection, Database references, Derived calculations