3MB7

Human CK2 catalytic domain in complex with a difurane derivative inhibitor (AMR)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.207 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

New potent dual inhibitors of CK2 and Pim kinases: discovery and structural insights.

Lopez-Ramos, M.Prudent, R.Moucadel, V.Sautel, C.F.Barette, C.Lafanechere, L.Mouawad, L.Grierson, D.Schmidt, F.Florent, J.C.Filippakopoulos, P.Bullock, A.N.Knapp, S.Reiser, J.B.Cochet, C.

(2010) FASEB J 24: 3171-3185

  • DOI: https://doi.org/10.1096/fj.09-143743
  • Primary Citation of Related Structures:  
    3MA3, 3MB6, 3MB7

  • PubMed Abstract: 

    Protein kinase casein kinase 2 (CK2) is a serine/threonine kinase with evidence of implication in growth dysregulation and apoptosis resistance, making it a relevant target for cancer therapy. Several CK2 inhibitors have been developed showing variable efficiency, emphasizing the need to expand the chemical diversity of those inhibitors. We report the identification and characterization of 2,8-difurandicarboxylic acid derivatives as a new class of nanomolar ATP-competitive inhibitors. Selectivity profiling pointed out proviral insertion Moloney virus kinases (Pim kinases) as the only other kinases that are significantly inhibited. By combining structure-activity relationship analysis with structural determination, we were able to determine the binding mode of these inhibitors for both kinases and to explain their strong inhibitory potency. Essential chemical features necessary for activity on both kinases were then identified. The described compounds are not cell permeable: however, they could provide a lead for developing novel inhibitors usable also in vivo. Given the similar but not redundant pathophysiological functions of CK2 and Pim family members, such inhibitors would provide new attractive leads for targeted cancer therapy. This work highlights that 2 functionally related kinases from different kinome branches display exquisite sensitivity to a common inhibitor.


  • Organizational Affiliation

    Centre de Recherche, Institut Curie, Paris, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Casein kinase II subunit alpha331Homo sapiensMutation(s): 0 
Gene Names: CSNK2A1CK2A1
EC: 2.7.11.1
UniProt & NIH Common Fund Data Resources
Find proteins for P68400 (Homo sapiens)
Explore P68400 
Go to UniProtKB:  P68400
PHAROS:  P68400
GTEx:  ENSG00000101266 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP68400
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
14I PDBBind:  3MB7 IC50: 200 (nM) from 1 assay(s)
Binding MOAD:  3MB7 IC50: 200 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.203 
  • R-Value Observed: 0.207 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 58.661α = 90
b = 45.663β = 111.26
c = 63.923γ = 90
Software Package:
Software NamePurpose
AMoREphasing
REFMACrefinement
XDSdata reduction
XDSdata scaling

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-05-05
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2023-09-06
    Changes: Data collection, Database references, Derived calculations, Refinement description