3SXA

Crystal structure of ABBB+UDP+Gal with Glycerol as the cryoprotectant


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.206 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Sequence-dependent effects of cryoprotectants on the active sites of the human ABO(H) blood group A and B glycosyltransferases.

Johal, A.R.Schuman, B.Alfaro, J.A.Borisova, S.Seto, N.O.Evans, S.V.

(2012) Acta Crystallogr D Biol Crystallogr 68: 268-276

  • DOI: https://doi.org/10.1107/S0907444912001801
  • Primary Citation of Related Structures:  
    3SX3, 3SX5, 3SX7, 3SX8, 3SXA, 3SXB, 3SXC, 3SXD, 3SXE, 3SXG

  • PubMed Abstract: 

    The human ABO(H) A and B blood group glycosyltransferases GTA and GTB differ by only four amino acids, yet this small dissimilarity is responsible for significant differences in biosynthesis, kinetics and structure. Like other glycosyltransferases, these two enzymes have been shown to recognize substrates through dramatic conformational changes in mobile polypeptide loops surrounding the active site. Structures of GTA, GTB and several chimeras determined by single-crystal X-ray diffraction demonstrate a range of susceptibility to the choice of cryoprotectant, in which the mobile polypeptide loops can be induced by glycerol to form the ordered closed conformation associated with substrate recognition and by MPD [hexylene glycol, (±)-2-methyl-2,4-pentanediol] to hinder binding of substrate in the active site owing to chelation of the Mn²⁺ cofactor and thereby adopt the disordered open state. Glycerol is often avoided as a cryoprotectant when determining the structures of carbohydrate-active enzymes as it may act as a competitive inhibitor for monosaccharide ligands. Here, it is shown that the use of glycerol as a cryoprotectant can additionally induce significant changes in secondary structure, a phenomenon that could apply to any class of protein.


  • Organizational Affiliation

    Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Histo-blood group ABO system transferase293Homo sapiensMutation(s): 0 
Gene Names: ABO
EC: 2.4.1.37 (PDB Primary Data), 2.4.1.40 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for P16442 (Homo sapiens)
Explore P16442 
Go to UniProtKB:  P16442
PHAROS:  P16442
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP16442
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.50 Å
  • R-Value Free: 0.233 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.206 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 52.48α = 90
b = 149.74β = 90
c = 79.61γ = 90
Software Package:
Software NamePurpose
d*TREKdata reduction
REFMACrefinement
PDB_EXTRACTdata extraction
CrystalCleardata collection
d*TREKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-02-29
    Type: Initial release
  • Version 1.1: 2012-03-28
    Changes: Database references
  • Version 1.2: 2018-03-07
    Changes: Data collection
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Database references, Derived calculations, Structure summary
  • Version 1.4: 2023-09-13
    Changes: Data collection, Database references, Refinement description, Structure summary