Structural analyses unravel the molecular mechanism of cyclic di-GMP regulation of bacterial chemotaxis via a PilZ adaptor protein.
Yan, X.F., Xin, L., Yen, J.T., Zeng, Y., Jin, S., Cheang, Q.W., Fong, R.A.C.Y., Chiam, K.H., Liang, Z.X., Gao, Y.G.(2018) J Biol Chem 293: 100-111
- PubMed: 29146598
- DOI: https://doi.org/10.1074/jbc.M117.815704
- Primary Citation of Related Structures:
5Y4R, 5Y4S - PubMed Abstract:
The bacterial second messenger cyclic di-GMP (c-di-GMP) has emerged as a prominent mediator of bacterial physiology, motility, and pathogenicity. c-di-GMP often regulates the function of its protein targets through a unique mechanism that involves a discrete PilZ adaptor protein. However, the molecular mechanism for PilZ protein-mediated protein regulation is unclear. Here, we present the structure of the PilZ adaptor protein MapZ cocrystallized in complex with c-di-GMP and its protein target CheR1, a chemotaxis-regulating methyltransferase in Pseudomonas aeruginosa This cocrystal structure, together with the structure of free CheR1, revealed that the binding of c-di-GMP induces dramatic structural changes in MapZ that are crucial for CheR1 binding. Importantly, we found that restructuring and repositioning of two C-terminal helices enable MapZ to disrupt the CheR1 active site by dislodging a structural domain. The crystallographic observations are reinforced by protein-protein binding and single cell-based flagellar motor switching analyses. Our studies further suggest that the regulation of chemotaxis by c-di-GMP through MapZ orthologs/homologs is widespread in proteobacteria and that the use of allosterically regulated C-terminal motifs could be a common mechanism for PilZ adaptor proteins. Together, the findings provide detailed structural insights into how c-di-GMP controls the activity of an enzyme target indirectly through a PilZ adaptor protein.
Organizational Affiliation:
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 639798, Singapore.